703 | Kč |
(-13%) 810 Kč |
Super Hydro 77 DH12 2270gProteinové nápoje, bílkoviny s obsahem 66-75% proteinů, bílkovin nad 2000g
|
|||||||||||||||||
|
|||||||||||||||||
![]() 1x Dárek v hodnotě 239 Kč
Vitamin C prášek 250g . ![]() 1x Dárek v hodnotě 35 Kč
Nutra-GO Wafer 39g - lískový ořech . datum expirace: 31. 01. 2021 |
|||||||||||||||||
|
Další informace k produktu Super Hydro 77 DH12 2270g
Extrifit Vám ve své nové řadě výrobků přináší další inovovaný výrobek, a to tak radikálně, že jej můžeme nazvat spíše výrobkem novým! Výrobek, který jste znali jako Hydro Instant, jsme vylepšili: má lepší složení, lepší konzistenci i lepší chuť, a jmenuje se Hydro 77 DH12. A namísto jedné příchuti Hydro Instant Vám nyní nabízíme čtyři příchutě Hydro 77 DH12 a všechny jsou velmi chutné! Jejich příjemně sladká chuť je dána mimo jiné i tím, že výrobek obsahuje sladidlo z rostliny stévie, které je přírodního původu.
Hydro 77 DH12 obsahuje instantní, tedy snadno rozpustný, enzymaticky hydrolyzovaný syrovátkový koncentrát se stupněm hydrolýzy DH12.
Co znamená, že je protein hydrolyzovaný? Procesem hydrolýzy jsou bílkovinné vazby rozštěpeny proteázovými enzymy (enzymy štěpícími bílkoviny) na aminokyseliny s dlouhým řetězcem. Tyto aminokyseliny se nazývají polypeptidy. Jedná se o enzymatický proces hydrolyzace - pre-digestion („předžvýkání"). Jeho produktem je pro tělo skvěle využitelná bílkovina ve formě peptidů, které zahrnují: oligopeptidy (mají více jak 12 aminokyselin), dipeptidy (mají 2 aminokyseliny), tripeptidy (mají 3 aminokyseliny), tetrapeptidy (mají 4 aminokyseliny), pentapeptidy (mají 5 aminokyselin) atd. Index biologické využitelnosti BV 104 - 107.
Stupeň hydrolýzy – nejdůležitější údaj, který určuje kvalitu hydrolyzovaného proteinu. Proteiny mohou být vystaveny procesu hydrolýzy různou mírou, neboli mohou mít různě vysoký stupeň hydrolýzy. Na rozdíl od některých jiných výrobců uvádíme stupeň hydrolýzy nejen na etiketě výrobku, ale je obsažen přímo v jeho názvu - DH12, což je vysoký stupeň hydrolýzy, díky němuž má tento náš výrobek vysoký obsah krátkých peptidů. Proteiny s vysokým stupněm hydrolýzy jsou typické tím, že mají mírně, ale opravdu mírně a ne nepříjemně nahořklou chuť, což můžete pocítit i u našeho výrobku, a je to dokladem toho, že se jedná o skutečně kvalitní hydrolyzovaný produkt. Vyhněte se tzv. hydrům, které neuvádí stupeň hydrolýzy. Obvykle je to v takovém případě maximálně stupeň 4, který nemá význam v rychlosti vstřebávání bílkoviny. Jen je dražší.
Známkou kvality proteinových přípravků je i obsah jednotlivých bílkovinných frakcí, který Extrifit na etiketě tohoto výrobku jasně deklaruje: Hydro 77 DH12 obsahuje beta laktoglobulin 36 %, alfa laktalbumin 15 %, imunoglobulin 2,5 %, bovinní sérový albumin 2,5 %, bílkovinné frakce syrovátky s molární hmotností 500 – 1000 Da 4 % a bílkovinné frakce syrovátky s molární hmotností < 500 KDa 40 %.
Obsah aminokyselin ve 100 g Hydro 77 DH12 je podle jednotlivých příchutí 76165 - 79458 mg. Jeho výhodou je také nízký obsah sacharidů a tuku. Příjem tohoto vysoce kvalitního zdroje proteinu přispívá k růstu svalové hmoty a k jejímu udržení v situacích, kdy je ohrožena katabolizací.
Doplněk stravy. Určeno pro zvláštní výživu - vhodné pro sportovce.
SLOŽENÍ
Super Hydro 77 DH12 2270g
obsahuje:
Čokoláda - enzymaticky hydrolyzovaný syrovátkový protein se stupněm hydrolýzy DH12 (obsah bílkovinných frakcí: beta laktoglobulin 36 %, alfa laktalbumin 15 %, imunoglobulin 2,5 %, bovinní serový albumin 2,5 %, bílkovinné frakce syrovátky s molární hmotností 500 - 1000 Da 4 %, bílkovinné frakce syrovátky s molární hmotností < 500 KDa 40 %), komplex 7 enzymů: papain, alfa amyláza, bromelain, laktáza, celuláza, neutrální proteáza, lipáza;
přidané látky: odtučněné kakao, aroma, steviol-glykosidy (sladidlo z rostliny stévie - přírodního původu), sukralóza (sladidlo), annato (přírodní barvivo), sójový lecitin 0,29 % (pro instantizaci)
Vanilka - enzymaticky hydrolyzovaný syrovátkový protein se stupněm hydrolýzy DH12 (obsah bílkovinných frakcí: beta laktoglobulin 36 %, alfa laktalbumin 15 %, imunoglobulin 2,5 %, bovinní serový albumin 2,5 %, bílkovinné frakce syrovátky s molární hmotností 500 - 1000 Da 4 %, bílkovinné frakce syrovátky s molární hmotností < 500 KDa 40 %), komplex 7 enzymů: papain, alfa amyláza, bromelain, laktáza, celuláza, neutrální proteáza, lipáza;
přidané látky: aroma, steviol-glykosidy (sladidlo z rostliny stévie - přírodního původu), sukralóza (sladidlo), beta karoten a annato (přírodní barviva), sójový lecitin 0,29 % (pro instantizaci)
Jahoda - enzymaticky hydrolyzovaný syrovátkový protein se stupněm hydrolýzy DH12 (obsah bílkovinných frakcí: beta laktoglobulin 36 %, alfa laktalbumin 15 %, imunoglobulin 2,5 %, bovinní serový albumin 2,5%, bílkovinné frakce syrovátky s molární hmotností 500 - 1000 Da 4 %, bílkovinné frakce syrovátky s molární hmotností < 500 KDa 40 %), komplex 7 enzymů: papain, alfa amyláza, bromelain, laktáza, celuláza, neutrální proteáza, lipáza;
přidané látky: sušené jahody, aroma, extrakt z červené řepy a annato (přírodní barviva), steviol-glykosidy (sladidlo z rostliny stévie - přírodního původu), sukralóza (sladidlo), sójový lecitin 0,29 % (pro instantizaci)
Banán - enzymaticky hydrolyzovaný syrovátkový protein se stupněm hydrolýzy DH12 (obsah bílkovinných frakcí: beta-laktoglobulin 36 %, alfa laktalbumin 15 %, imunoglobulin 2,5 %, bovinní serový albumin 2,5 %, bílkovinné frakce syrovátky s molární hmotností 500 - 1000 Da 4 %, bílkovinné frakce syrovátky s molární hmotností < 500 KDa 40 %), komplex 7 enzymů: papain, alfa amyláza, bromelain, laktáza, celuláza, neutrální proteáza, lipáza
přidané látky: sušené banány, aroma, beta karoten a annato (přírodní barviva), steviol-glykosidy (sladidlo z rostliny stévie - přírodního původu), sukralóza (sladidlo), sójový lecitin 0,29 % (pro instantizaci)
DÁVKOVÁNÍ
Super Hydro 77 DH12 2270g
- závisí na tělesné hmotnosti, sportovní aktivitě a složení stravy
- doporučujeme rozložit denní dávku (2 - 6 odměrek) do 2 – 3 porcí
- díky vysokému obsahu krátkých peptidů s rychlou utilizací je tento protein vhodný pro konzumaci po tréninku, popř. i před tréninkem a ráno nalačno
- rozmixujte obsah 1 odměrky (= 30 g) Hydro 77 DH12 ve 150 - 200 ml vody
VANILKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1663 kJ | 498,9 kJ | |
Energetická hodnota | 396 kCal | 118,8 kCal | |
Bílkoviny - proteiny | 74 g | 22,2 g |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. ![]() |
Sacharidy - uhlohydráty | 6,1 g | 1,83 g |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. ![]() |
z toho cukry | 3,3 g | 0,99 g |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. ![]() |
Tuky | 8,1 g | 2,43 g |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. ![]() |
z toho nasycené mastné kyseliny | 3,6 g | 1,08 g |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH ![]() |
Sůl | 0,34 g | 0,1 g |
BANÁN | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1661 kJ | 498,3 kJ | |
Energetická hodnota | 396 kCal | 118,8 kCal | |
Bílkoviny - proteiny | 73 g | 21,9 g |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. ![]() |
Sacharidy - uhlohydráty | 7,5 g | 2,25 g |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. ![]() |
z toho cukry | 3,7 g | 1,11 g |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. ![]() |
Tuky | 8 g | 2,4 g |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. ![]() |
z toho nasycené mastné kyseliny | 3,6 g | 1,08 g |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH ![]() |
Vláknina | 0,2 g | 0,06 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. ![]() |
Sůl | 0,3 g | 0,09 g |
ČOKOLÁDA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1642 kJ | 492,6 kJ | |
Energetická hodnota | 391 kCal | 117,3 kCal | |
Bílkoviny - proteiny | 72 g | 21,6 g |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. ![]() |
Sacharidy - uhlohydráty | 7 g | 2,1 g |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. ![]() |
z toho cukry | 3,2 g | 0,96 g |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. ![]() |
Tuky | 8,2 g | 2,46 g |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. ![]() |
z toho nasycené mastné kyseliny | 3,7 g | 1,11 g |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH ![]() |
Vláknina | 1,4 g | 0,42 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. ![]() |
Sůl | 0,29 g | 0,09 g |
JAHODA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Energetická hodnota | 1658 kJ | 497,4 kJ | |
Energetická hodnota | 395 kCal | 118,5 kCal | |
Bílkoviny - proteiny | 73 g | 21,9 g |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. ![]() |
Sacharidy - uhlohydráty | 7,5 g | 2,25 g |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. ![]() |
z toho cukry | 4 g | 1,2 g |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. ![]() |
Tuky | 8 g | 2,4 g |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. ![]() |
z toho nasycené mastné kyseliny | 3,6 g | 1,08 g |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH ![]() |
Sůl | 0,3 g | 0,09 g |
VANILKA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7557 mg | 2267,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. ![]() |
Kyselina glutamová | 11744 mg | 3523,2 mg | |
L-Alanin | 3788 mg | 1136,4 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. ![]() |
L-Arginin | 2416 mg | 724,8 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. ![]() |
L-Cystein | 1794 mg | 538,2 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. ![]() |
L-Fenylalanin | 2605 mg | 781,5 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. ![]() |
L-Histidin | 1403 mg | 420,9 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. ![]() |
L-Isoleucin | 4662 mg | 1398,6 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. ![]() |
Glycin | 1536 mg | 460,8 mg | |
L-Leucin | 8223 mg | 2466,9 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). ![]() |
L-Prolin | 3063 mg | 918,9 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. ![]() |
L-Serin | 3939 mg | 1181,7 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. ![]() |
L-Threonin | 5463 mg | 1638,9 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. ![]() |
L-Lysin | 6590 mg | 1977 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. ![]() |
L-Methionin | 1541 mg | 462,3 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. ![]() |
L-Tryptofan | 1143 mg | 342,9 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. ![]() |
L-Tyrosin | 2412 mg | 723,6 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. ![]() |
L-Valin | 4659 mg | 1397,7 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. ![]() |
BANÁN | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7729 mg | 2318,7 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. ![]() |
Kyselina glutamová | 12017 mg | 3605,1 mg | |
L-Alanin | 3879 mg | 1163,7 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. ![]() |
L-Arginin | 2445 mg | 733,5 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. ![]() |
L-Cystein | 1847 mg | 554,1 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. ![]() |
L-Fenylalanin | 2650 mg | 795 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. ![]() |
L-Histidin | 1436 mg | 430,8 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. ![]() |
L-Isoleucin | 4792 mg | 1437,6 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. ![]() |
Glycin | 1545 mg | 463,5 mg | |
L-Leucin | 8460 mg | 2538 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). ![]() |
L-Prolin | 3131 mg | 939,3 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. ![]() |
L-Serin | 4038 mg | 1211,4 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. ![]() |
L-Threonin | 5621 mg | 1686,3 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. ![]() |
L-Lysin | 6779 mg | 2033,7 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. ![]() |
L-Methionin | 1586 mg | 475,8 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. ![]() |
L-Tryptofan | 1169 mg | 350,7 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. ![]() |
L-Tyrosin | 2460 mg | 738 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. ![]() |
L-Valin | 4766 mg | 1429,8 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. ![]() |
ČOKOLÁDA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7557 mg | 2267,1 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. ![]() |
Kyselina glutamová | 11744 mg | 3523,2 mg | |
L-Alanin | 3788 mg | 1136,4 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. ![]() |
L-Arginin | 2416 mg | 724,8 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. ![]() |
L-Cystein | 1794 mg | 538,2 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. ![]() |
L-Fenylalanin | 2605 mg | 781,5 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. ![]() |
L-Histidin | 1403 mg | 420,9 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. ![]() |
L-Isoleucin | 4662 mg | 1398,6 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. ![]() |
Glycin | 1536 mg | 460,8 mg | |
L-Leucin | 8223 mg | 2466,9 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). ![]() |
L-Prolin | 3063 mg | 918,9 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. ![]() |
L-Serin | 3939 mg | 1181,7 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. ![]() |
L-Threonin | 5463 mg | 1638,9 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. ![]() |
L-Lysin | 6590 mg | 1977 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. ![]() |
L-Methionin | 1541 mg | 462,3 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. ![]() |
L-Tryptofan | 1143 mg | 342,9 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. ![]() |
L-Tyrosin | 2412 mg | 723,6 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. ![]() |
L-Valin | 4659 mg | 1397,7 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. ![]() |
JAHODA | ve 100 g | v 1 dávce 30 g | |
---|---|---|---|
Kyselina asparagová | 7700 mg | 2310 mg |
Aminokyselinové spektrum Kyselina asparagová Aminokyselina - součást svalového metabolismu, zvyšuje vytrvalost a energii. ![]() |
Kyselina glutamová | 11970 mg | 3591 mg | |
L-Alanin | 3866 mg | 1159,8 mg |
Aminokyselinové spektrum L-Alanin Aminokyselina - hlavní součást pojivových tkání, klíčová látka metabolismu glukózy, umožňuje dodávat svalům energii z aminokyselin. ![]() |
L-Arginin | 2438 mg | 731,4 mg |
Aminokyselinové spektrum L-Arginin Aminokyselina - zvyšuje hladinu oxidu dusíku podporujícího růst svalů, zvyšuje uvolňování inzulinu, glukagonu a růstových hormonů, významná složka svalového metabolismu, řídí uvolňování, transport a ukládání dusíku v těle, zpomaluje úbytek svalů po námaze. ![]() |
L-Cystein | 1840 mg | 552 mg |
Aminokyselinové spektrum L-Cystein Aminokyselina - chrání organismus před jedy, účinky alkoholu, tabáku, významný pro růst vlasů, zvyšuje hladinu glutathionu, zvyšuje imunitu vůči AIDS. ![]() |
L-Fenylalanin | 1642 mg | 492,6 mg |
Aminokyselinové spektrum L-Fenylalanin Aminokyselina - hlavní základní látka tyrosinu, zlepšuje náladu, zvyšuje bdělost, pomáhá při léčení deprese, zvyšuje hladinu enkefalinu, používá se při terapii bolesti, hlavní surovina k tvorbě kolagenu, potlačuje chuť k jídlu. ![]() |
L-Histidin | 1431 mg | 429,3 mg |
Aminokyselinové spektrum L-Histidin Aminokyselina - nepostradatelná pro děti, výchozí látka nervového přenašeče histaminu, dipeptidů carnosinu a homocarnosinu. ![]() |
L-Isoleucin | 4776 mg | 1432,8 mg |
Aminokyselinové spektrum L-Isoleucin Větvená aminokyselina, kterou mohou svaly využít k pokrytí zvýšené energetické potřeby. ![]() |
Glycin | 1540 mg | 462 mg | |
L-Leucin | 8431 mg | 2529,3 mg |
Aminokyselinové spektrum L-Leucin Větvená aminokyselina, kterou mohou svaly využít v pokrytí zvýšené energetické potřeby, suplementace chrání svaly před odbouráváním, výchozí látka enkefalinu (omezuje bolesti podobně jako endorfiny). ![]() |
L-Prolin | 3116 mg | 934,8 mg |
Aminokyselinové spektrum L-Prolin Aminokyselina - hlavní úloha při tvorbě pojivové tkáně a stavbě srdečního svalu, hlavní součást kolagenu. ![]() |
L-Serin | 4023 mg | 1206,9 mg |
Aminokyselinové spektrum L-Serin Aminokyselina - důležitá při tvorbě energie, posiluje paměť a nervové funkce, důležitý při tvorbě imunoglobulinu a protilátek. ![]() |
L-Threonin | 5601 mg | 1680,3 mg |
Aminokyselinové spektrum L-Threonin Aminokyselina - nedostatek způsobuje ukládání tuku v játrech, důležitá složka kolagenu, snížená hladina u vegetariánů, posiluje imunitní systém. ![]() |
L-Lysin | 6754 mg | 2026,2 mg |
Aminokyselinové spektrum L-Lysin Aminokyselina - nízké hladiny brzdí syntézu bílkovin ve svalech a pojivových tkáních, působí proti virům, potřebný k tvorbě karnitinu, stimuluje tvorbu kolagenu, chrupavek a pojiv. ![]() |
L-Methionin | 1581 mg | 474,3 mg |
Aminokyselinové spektrum L-Methionin Aminokyselina - výchozí složka cysteinu, kreatinu a karnitinu, zvyšuje hladinu glutathionu. ![]() |
L-Tryptofan | 1165 mg | 349,5 mg |
Aminokyselinové spektrum L-Tryptofan Aminokyselina - výchozí látka nervového přenašeče serotoninu (uklidňuje), používá se k léčení nespavosti, stresu, úzkosti a deprese. ![]() |
L-Tyrosin | 2452 mg | 735,6 mg |
Aminokyselinové spektrum L-Tyrosin Aminokyselina, mozkový nutrient. Zlepšení psychické odolnosti při tělesné a duševní zátěži, podpora regenerace, výživa mozku a zraku, snižování krevního tlaku. ![]() |
L-Valin | 4751 mg | 1425,3 mg |
Aminokyselinové spektrum L-Valin Větvená aminokyselina rychle přecházející do svalů, ovlivňuje absorpci některých nervových přenašečů v mozku podobně jako tryptofan, fenylalanin a tyrosin. ![]() |
Počet dávek v balení | 75 |
Udává počet jednotlivých dávek výrobku v balení. ![]() |
---|---|---|
Celková hmotnost včetně obalu | 2300 g |
Udává celkovou hmotnost výrobku včetně jeho obalu. ![]() |
Hromadné balení | 1 ks |
Udává počet kusů (kartonové množství) výrobku v hromadném balení (v kartonu) ![]() |
Další informace k produktu Vitamin C prášek 250g
Obsažená aktivní látka (vitamin C) přispívá k:
- normální funkci imunitního systému
- snížení míry únavy a vyčerpání
- ochraně před oxidativním stresem
- normálnímu energetickému metabolizmu
- tvorbě kolagenu pro normální funkci kůže
Vitamin C (kyselina L-askorbová) v prášku.
SLOŽENÍ
Vitamin C prášek 250g
obsahuje: Kyselina L-askorbová 100% čistý prášek.
DÁVKOVÁNÍ
Vitamin C prášek 250g
Rozpusťte cca 800 mg prášku (špička lžičky) ve sklenici vody, vlažného čaje nebo ovocné šťávy. Užívejte 1-2x denně po jídle.
Upozornění:
Nevhodné pro děti do 6 let, těhotné a kojící ženy. Uchovávejte mimo dosah dětí. Po otevření skladujte na suchém místě při teplotě do 25°C, pečlivě uzavřené. Výrobce neručí za škody vzniklé nevhodným použitím nebo skladováním. Není náhrada pestré stravy.
v 1 dávce 800 mg | |||
---|---|---|---|
Vitamín C | 800 mg |
Vitamíny a minerály Vitamín C Významný antioxidant. Zlepšuje odolnost organismus proti infekcím a nepříznivým zevním vlivům. Vitamin C neboli kyselina askorbová je látka lehce ve vodě rozpustná. Je důležitou antioxidační látkou pro lidské tělo a je součástí řady dějů při výměně látkové v organismu. Má význam při syntéze kolagenu v pojivové tkáni, při přeměně některých aminokyselin v játrech, při syntéze steroidů v nadledvinkách, ve stimulaci dějů, které probíhají v mozku a při skladování železa v těle. Člověk si nedovede kyselinu askorbovou v těle vytvořit, je závislý na jejím příjmu potravou. Používá se k profylaxi s cílem udržet si správnou hladinu tohoto vitaminu v těle nebo při léčbě hypovitaminózy, tj. nedostatku tohoto vitaminu zejména u dětí, starších osob, kuřáků a alkoholiků. Při hypovitaminóze dochází k poškození krevních kapilár na místě buněčné výstelky, k poškození zubního lůžka, krvácení dásní, špatné hojivosti ran nebo se nedostatek vitaminu C projevuje únavností, slabostí, bolestmi v kostech, povadlou kůží. Kyselina askorbová se podává její při zvýšené spotřebě v těle, jako jsou např. virová onemocnění, stres, chlad a těžká práce. Vitaminu C se užívá také v období po nemoci, operaci a v těhotenství. Používá se také jako doplňkové léčivo při otravách některými dusíkatými barvivy. Nepodáváme při přecitlivělost na vitamin C, při výskytu ledvinných kamenů, při podávání sulfonamidů je nezbytné poradit se s lékařem! Pozor na příjem vysokých dávek vitaminu C nad 1- 2 g denně může vést k dráždění sliznice žaludku a jícnu, provázené někdy průjmy, bolestmi hlavy, slabostí, nespavosí, dále ke zvýšenému okyselení moče a ke tvorbě ledvinných oxalátových kaménků, k úbytku vitaminu B12 v těle a ke zvýšení hladiny cholesterolu. U alergiků se ojediněle může objevit kopřivka.Doporučená denní perorální dávka je okolo 50 mg (25-75 mg) denně pro dospělé a dětí nad 10 let. Dětem vevěku 3-10 let se doporučuje dávka poloviční. Potřeba vitaminu C se však značně zvyšuje při infekčních nemocech. Terapeutické dávky jsou vyšší v rozmezí 100-1000 mg denně. Dávku vitaminu C v průběhu těhotenství a období kojení konzultujte slékařem! Při podání vyšších dávek se vitamin C v těle nehromadí, jeho přebytek se vyloučí močí. Nejvýznamnějším zdrojem vitamínu C jsou u nás šípky, nať petržele, černý rybíz, jahody, kapusta, křen, zelí, paprika, pomeranč, citrón. Vitamín C je v těle důležitý především pro: - činnost imunity - metabolismus vápníku - pojivové tkáně, kolagen - stěny cév - zubní dáseň - zpracování tuků - pevnou, hladkou kůži - silné vlasy - zrakovou ostrost - pozitivní náladu - zdravé nervy - koncentrační schopnosti - spánek - překonání stresu ![]() |
Počet dávek v balení | 312 |
Udává počet jednotlivých dávek výrobku v balení. ![]() |
---|---|---|
Celková hmotnost včetně obalu | 250 g |
Udává celkovou hmotnost výrobku včetně jeho obalu. ![]() |
Hromadné balení | 1 ks |
Udává počet kusů (kartonové množství) výrobku v hromadném balení (v kartonu) ![]() |
Další informace k produktu Nutra-GO Wafer 39g
Skvělá sušenka se zvýšeným obsahem proteinu a nízkým obsahem cukru. I přesto velmi chutná. Bez obav si můžete vychutnat skvělé mlsání ve formě sušenky s nízkým obsahem cukru, více než 18 % proteinu a s lahodnou příchutí. Kombinuje výbornou chuť klasických sušenek s parametry vyladěného fitness produktu. Se sladidly.
- po cvičení
- jako svačinka připravená ihned k použití
- sušenka je uvnitř rozdělena na dva kusy
SLOŽENÍ
Nutra-GO Wafer 39g
Čokoláda
- sladidla (maltitol, sukralóza), palmový olej, syrovátkový proteinový izolát, kukuřičná mouka, odtučněný kakaový prášek (9,9 %), škrob, kakaová pasta (2,4 %), plnidlo polydextróza, mandlová pasta, kakaové máslo (0,5 %), inulin, aromata, emulgátor sójový lecitin, chlorid sodný, zahušťovadlo guarová guma, kypřicí látka uhličitan amonný, antioxidant kyselina askorbová
Vanilka
- sladidla (maltitol, sukralóza), palmový olej, syrovátkový proteinový izolát, kukuřičná mouka, kakaová drť (6,9 %), škrob, sušené mléko, kakaové máslo, plnidlo polydextróza, mandlová pasta, dextróza, nízkotučný kakaový prášek, emulgátor sójový lecitin, sůl, zahušťovadlo guarová guma, kypřicí látka uhličitan amonný, přírodní vanilkové aroma, antioxidant kyselina askorbová
Lískový ořech
- sladidla (maltitol, sukralóza), palmový olej, syrovátkový proteinový izolát, kukuřičná mouka, lískové ořechy (8,3 %), nízkotučný kakaový prášek (5,5 %), škrob, plnidlo polydextróza, pasta z lískových ořechů (2 %), mandlová pasta, sušené odtučněné mléko, kakaové máslo, inulin, emulgátor sójový lecitin, máselný tuk, sůl, aroma, kypřicí látka uhličitan amonný, zahušťovadlo guarová guma, regulátor kyselosti kyselina askorbová
Kokos
- sladidla (maltitol, sukralóza), palmový olej, syrovátkový proteinový izolát, kukuřičná mouka, kokosové kousky (9,5 %), škrob, mandle, sušené mléko, plnidlo polydextróza, kakaové máslo, nízkotučný kakaový prášek, sušené kokosové mléko (1,2 %), mandlová pasta, emulgátor sójový lecitin, sůl, maltodextrin, zahušťovadlo guarová guma, kypřicí látka uhličitan amonný, antioxidant kyselina askorbová, aromata
Jahoda
- sladidlo (maltitol), palmový olej, syrovátkový proteinový izolát, oplatka 16 % (kukuřičná mouka, škrob, nízkotučný kakaový prášek, chlorid sodný, emulgátor sójový lecitin, zahušťovadlo guarová guma, kypřicí látka uhličitan amonný, antioxidant kyselina askorbová), sušené plnotučné mléko, kakaové máslo, plnidlo polydextróza, kyselina citronová, emulgátor sójový lecitin, aromata, sladidlo sukralóza, barvivo košenila
DÁVKOVÁNÍ
Nutra-GO Wafer 39g
užívejte dle potřeby
Upozornění:
Skladujte v chladu, suchu mimo dosah přímého slunečního záření. Chraňte před mrazem. Výrobce neručí za případné škody vzniklé nevhodným použitím nebo skladováním. Nadměrná konzumace může mít projímavý účinek. Může obsahovat vejce, lepek, sezam a ořechy. Nevhodné pro diabetiky.
Upozornění pro alergiky: Alergeny jsou vyznačeny tučně ve složení produktu.
Upozornění na alergeny: Tento produkt může obsahovat stopy jiných druhů ořechů, arašídů, sezamu, vajec, lepku, korýšů, oříšků a zbytky skořápkových plodů.
ve 100 g | v 1 tyčince 39 g | ||
---|---|---|---|
Energetická hodnota | 1995 kJ | 778,05 kJ | |
Energetická hodnota | 480 kCal | 187,2 kCal | |
Bílkoviny - proteiny | 19 g | 7,41 g |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. ![]() |
Sacharidy - uhlohydráty | 44 g | 17,16 g |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. ![]() |
z toho cukry | 2,1 g | 0,82 g |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. ![]() |
Tuky | 30 g | 11,7 g |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. ![]() |
z toho nasycené mastné kyseliny | 18 g | 7,02 g |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH ![]() |
Vláknina | 2,1 g | 0,82 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. ![]() |
Sůl | 0,37 g | 0,14 g |
KOKOS | ve 100 g | v 1 tyčince 39 g | |
---|---|---|---|
Energetická hodnota | 2096 kJ | 817,44 kJ | |
Energetická hodnota | 485 kCal | 189,15 kCal | |
Bílkoviny - proteiny | 18 g | 7,02 g |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. ![]() |
Sacharidy - uhlohydráty | 39 g | 15,21 g |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. ![]() |
z toho cukry | 1,6 g | 0,62 g |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. ![]() |
Tuky | 34 g | 13,26 g |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. ![]() |
z toho nasycené mastné kyseliny | 22 g | 8,58 g |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH ![]() |
Vláknina | 4,6 g | 1,79 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. ![]() |
Sůl | 0,26 g | 0,1 g |
LÍSKOVÝ OŘECH | ve 100 g | v 1 tyčince 39 g | |
---|---|---|---|
Energetická hodnota | 2014 kJ | 785,46 kJ | |
Energetická hodnota | 485 kCal | 189,15 kCal | |
Bílkoviny - proteiny | 20 g | 7,8 g |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. ![]() |
Sacharidy - uhlohydráty | 38 g | 14,82 g |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. ![]() |
z toho cukry | 2,5 g | 0,98 g |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. ![]() |
Tuky | 31 g | 12,09 g |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. ![]() |
z toho nasycené mastné kyseliny | 15 g | 5,85 g |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH ![]() |
Vláknina | 5,3 g | 2,07 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. ![]() |
Sůl | 0,29 g | 0,11 g |
VANILKA | ve 100 g | v 1 tyčince 39 g | |
---|---|---|---|
Energetická hodnota | 2008 kJ | 783,12 kJ | |
Energetická hodnota | 480 kCal | 187,2 kCal | |
Bílkoviny - proteiny | 18 g | 7,02 g |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. ![]() |
Sacharidy - uhlohydráty | 44 g | 17,16 g |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. ![]() |
z toho cukry | 1,6 g | 0,62 g |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. ![]() |
Tuky | 31 g | 12,09 g |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. ![]() |
z toho nasycené mastné kyseliny | 18 g | 7,02 g |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH ![]() |
Vláknina | 3,3 g | 1,29 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. ![]() |
Sůl | 0,21 g | 0,08 g |
ČOKOLÁDA | ve 100 g | v 1 tyčince 39 g | |
---|---|---|---|
Energetická hodnota | 1931 kJ | 753,09 kJ | |
Energetická hodnota | 464 kCal | 180,96 kCal | |
Bílkoviny - proteiny | 20 g | 7,8 g |
Průměrné nutriční informace Bílkoviny - proteiny Z hlediska svalového objemu je pro nás nejdůležitější taková bílkovina, která je rychle vstřebatelná a má silný anabolický účinek. Velmi výstižnou odpovědí je poměr bílkovin v lidském mateřském mléce. Jinými slovy je to právě to, na čem jsme „odkojeni“ v období, kdy potřebujeme maximální růstový potenciál. Lidské mléko obsahuje syrovátkovou bílkovinu a kasein v poměru 4 / 1, tedy přesně naopak než je tomu v mléce kravském. Proto je pro nás nejdůležitější v objemovém tréninku právě syrovátková bílkovina, která se vyznačuje velmi rychlou „vstřebatelností“. Pro příklad - pokud přijmeme nalačno 30g syrovátkového proteinu, hladina aminokyselin v krvi dosáhne vrcholu již po jedné hodině a vrátí se na původní úroveň cca po dvou hodinách, to má svůj význam zejména po tréninku, kdy je kladen důraz na rychlý příjem lehce stravitelných bílkovin. Dalším faktorem je silný anabolický účinek syrovátkové bílkoviny, kdy uvedená dávka 30g zvýší až o 68% úroveň syntézy bílkovin. Doporučené formy pro svalový objem: Syrovátkový izolát, koncentrát, hydrolyzát, či jejich kombinace ( viz. níže – legenda ) Vícesložková bílkovina, v poměru syrovátková bílkovina / kasein, nebo vaječná bílkovina – 3 až 4 / 1 Večer před spaním je možné dávkovat kasein, nebo mléčný izolát DIETA, ZPEVNĚNÍ POSTAVY Pokud je Vašim cílem „shodit“ tuk a zpevnit postavu, je pro Vás naopak nejdůležitější bílkovina, která se vstřebává pomalu a zásobuje tak Vaše tělo potřebnými aminokyselinami po dobu tří až čtyř hodin. Právě kravské mléko má ideální poměr „pomalého“ kaseinu a syrovátky 4 / 1. Ideální formou je tedy v tomto případe mléčný izolát, či přímo kasein. Mléčný izolát nabízí kromě vysokého obsahu pro tělo nepostradatelných (esenciálních) aminokyselin, vysoký obsah bioaktivních peptidů (laktoferin, glykomakropeptidy), které mají pozitivní účinky na zdravotní stav a regeneraci. Kasein je nesporně v této kategorii králem, je znám pro svůj silný antikatabolický účinek: díky pomalému vstřebávání, velmi silně brání odbourávání bílkovin ze svalové hmoty, po dobu až 4 hodin. Nevýhodou kaseinu je těžší stravitelnost (sráží se žaludku během trávení do „zhluků“), proto se vyrábí ve formě vazby na minerál a to nejčastěji vápník, nebo draslík. Právě tyto formy usnadňují jeho stravitelnost a využití. V současné době přichází také na trh nová, revoluční forma micelárního kaseinu, která daný problém doslova eliminuje. Další vhodnou bílkovinou, zejména pro ženy, je sojová bílkovina, opět ve formě sojového izolátu. Sojová bílkovina je po Amaranthu druhá nejplnohodnotnější rostlinná bílkovina, která má deficit esenciální (pro tělo nepostradatelné) aminokyseliny L-methioninu. Mezi její hlavní pozitiva patří vysoký obsah flavonoidů, které mají silné antioxidační a antikancerogenní (protirakovinné) účinky. Často se v tomto případě používají vícesložkové proteinové produkty založené na kombinaci uvedených složek, které jsou případně obohaceny i o vaječný albumin, který je po kaseinu druhou „nejpomalejší“ bílkovinou z hlediska vstřebávání. Doporučené formy pro dietu, zpevnění postavy: Kaseinát vápenatý, micelární kasein Mléčný izolát Sojový izolát Kombinace uvedených složek Legenda - používané formy bílkovin dle čistoty: - Koncentrát: obsahuje 70 – 85 % bílkovin, zbytek tvoří nežádoucí balastní látky, u mléčných bílkovin např. laktóza. Jedná se o méně kvalitní formu bílkoviny - Izolát: obsahuje 90 – 98 % bílkovin. Jedná se o vysokokvalitní formu bílkovin. Poznámka: pokud se daná forma bílkoviny štěpí, vzniká hydrolyzát, pro který je charakteristický vysoký obsah volných, rychle vstřebatelných aminokyselin a jejich řetězců ve formě oligopeptidů a polypeptidů. Jak již bylo řečeno dříve, bílkoviny, neboli proteiny jsou opravdovým základem nejen posilovacího tréninku. Proteiny jsou totiž v organismu všudypřítomné. Jsou jak častou stavební jednotkou (základ svalů, kostí i vazů), tak především součást všech enzymů, to znamená látek hlídajících a usměrňujících veškeré metabolické pochody (ano, i ty související s posilováním). My se ale nyní nebudeme zabývat metabolismem jako takovým příliš do hloubky a spíš se podíváme na bílkoviny co do jejich příjmu a zhruba si přiblížíme jejich přeměny v organismu a úskalí v jejich požívání ... Proteiny nejsou ve své podstatě nic jiného než jen řetězec základních stavebních kamenů, a to sice aminokyselin. Takovýchto aminokyselin se v lidském těle vyskytuje 20 (v některých literaturách může být uvedeno 21). Tyto se dělí na neesenciální (tělo je dokáže vyrobit) a esenciální (obsahují některé řetězce, které tělo nedokáže připravit, a tudíž jsme odkázáni na jejich příjem v potravě). Je zajímavé, že pomocí pouhých 20 aminokyselin je možno poskládat nepřeberné množství proteinů jen jejich prostým přeskupením. Tomu se říká stavebnicový princip. ![]() |
Sacharidy - uhlohydráty | 40 g | 15,6 g |
Průměrné nutriční informace Sacharidy - uhlohydráty Organické látky obsažené v rostlinných a živočišných tkáních. Dělí se na jednoduché sacharidy, tj. na monosacharidy (glukosa, fruktosa), a na sacharidy složené, tj. oligosacharidy (disacharid sacharosa) a polysacharidy (škrob, celulosa). Sacharidy jsou vedle bílkovin a tuků nejdůležitější základní složkou výživy. ![]() |
z toho cukry | 0,8 g | 0,31 g |
Průměrné nutriční informace z toho cukry Cukry řadíme obecně mezi sacharidy. Jak již bylo v obecné kapitole o sacharidech řečeno, sacharidy dělíme dle složitosti do 3 základních skupiny: monosacharidy, oligosacharidy (disacharidy) a polysacharidy. Za cukry můžeme označit jednoduché monosacharidy (1 molekula cukerné jednotky) a disacharidy (2 molekuly cukerné jednotky). V laické veřejnosti je pojem „cukr“ užíván hlavně pro disacharid sacharózu (řepný či třtinový cukr), ačkoliv v oblasti nutričních hodnot (potravinářství) se do pojmu „cukry“, uvedených na etiketě, řadí veškeré jednoduché sacharidy v produktu obsažené. ![]() |
Tuky | 28 g | 10,92 g |
Průměrné nutriční informace Tuky Většina lidí zápasících s tukovými polštáři si říká, jaký by byl svět bez tuků skvělý. Omyl! Nejen, že by nebyl skvělý, ale byl by zhola nemožný. Sice nám způsobuje těžké chvíle před zrcadlem, ale ve své podstatě je pro život nepostradatelným. Tuky neboli lipidy jsou totiž nejen vydatným zdrojem a rezervoárem energie, ale podílí se také na stavbě biomembrán, jsou součástí stavby orgánových struktur, jsou výchozí látkou pro stavbu některých hormonů, žlučových kyselin aj., slouží jako tepelná a mechanická izolace (třeba ledvin) a také působí jako rozpouštědlo (především vitaminů A,D,E a K a jiných látek)... Na rozdíl o sacharidů je metabolismus tuků podstatně složitější. Zpracování začíná až ve dvanáctníku (první část tenkého střeva). Malé množství enzymů je sice již v žaludku, ale pro jejich úspěch je důležitá přítomnost žlučových kyselin, jejichž vývod ústí právě až do dvanáctníku. Žlučové kyseliny totiž působí jako emulgátory (tj. snižují povrchové napětí) tuků. To v praxi znamená že v podstatě rozbíjejí velké tukové shluky na malé a snadno zpracovatelné kapénky. Vlastním substrátem pro výrobu energie jsou pak vyšší mastné karboxylové kyseliny. Nepatrně jinak je tomu u kojenců, kteří mají mnohem větší aktivitu lipáz (enzymů štěpících tuky). Ti tedy mohou přijímat mnohem více tuků, ale za to hůře zpracovávají bílkoviny. Proto je důležité, aby pokud možno nepřecházeli předčasně na kravské mléko a zůstali na mléce mateřském. Totiž obsahuje hodně sacharidů a tuků a málo bílkovin. Ty navíc brzdí zpracování přijatého tuku. Tuky se samozřejmě jen okamžitě nespalují (jako je tomu třeba u jednoduchých sacharidů), ale také se ukládají. Ukládají se do speciálních buněk zvaných adipocyty. Při vysokém obsahu tuku nakonec jediná kapénka vyplní prakticky celý obsah buňky a naopak. Předpokládalo se, že množství a rozložení adipocytů po těle je dědičná záležitost (to znamená že rozložení a teoreticky i obsah tuku v těle by měl být geneticky daný). Ukládání tuku podporuje jednak zvýšený příjem především jednoduchých cukrů, jednak příjem živočišných tuků. Dobrou zprávou je, že se v současnosti věří, že jde o záležitost ovlivnitelnou, a to nejen v dětství, nýbrž i v dospělosti, což bylo dříve téměř nemyslitelné. Jinak i přeměna tukové tkáně oproti předpokladům je celkem svižná. Mluvím teď především o hnědém útrobním tuku. Podkožní tuk je totiž co do metabolismu podstatně méně aktivní. Dobrá zpráva je, že objem obou se dá snížit, a to v případě, kdy výdej energie převažuje nad příjmem (to znamená jednak dlouhotrvající výkony, jednak dlouhodobý půst). Mimo to se tuk ještě ukládá do svalů jako pohotovostní zásoba energie (jelikož zásoby glykogenu jsou malé a vydrží krátkou dobu). To ovšem funguje jen v případě, že mitochondrie (buněčné organely, které mají za úkol výrobu energie) mají k dispozici dostatek kyslíku a karnitinu (to je důležité především pro rýsovací dietu). Karnitin umíme dodat tělu uměle pomocí doplňků výživy podporujících odbourávání tuků. ![]() |
z toho nasycené mastné kyseliny | 17 g | 6,63 g |
Průměrné nutriční informace z toho nasycené mastné kyseliny nasycené mastné kyseliny (NMK neboli angl. SFA). Zmíněné nasycenosti mastných kyselin souvisí s dvojnými vazbami. Ty můžeme nalézt pouze u mononenasycených (jedna dvojná vazba v řetězci) a polynenasycených (dvě a více dvojných vazeb) mastných kyselin. Mastné kyseliny můžeme dále dělit mimo jiné také dle délky řetězce, respektive podle počtu atomů uhlíku. Mastné kyseliny s C4 – C10 Mastné kyseliny s nízkým počtem atomů uhlíku mají velmi dobrou vstřebatelnost, jelikož se skrze střevní stěnu dostávají prostou difúzí. Na rozdíl od vyšších mastných kyselin se z nich nevytvářejí tuky a přecházejí rovnou do jater, kde se za tvorby energie přeměňují na oxid uhličitý a vodu. [1] Mastné kyseliny s C12 – C16 Tyto mastné kyseliny působí v organismu spíše negativně, jelikož mají patrný vliv na hladinu cholesterolu (cholesterolémii), a to jak toho celkového, tak i na cholesterolové frakce typu LDL a HDL. Mastná kyselina laurová má negativní vliv na hladinu celkového cholesterolu a LDL cholesterolu. Toto zvýšení je způsobeno sníženým počtu LDL receptorů, které tak můžou navázat pouze omezené množství LDL frakce. Přebytečné molekuly LDL cholesterolu plavou v krvi a zvyšují tak riziko rozvinu aterosklerózy a kardiovaskulárních chorob. Kyselina laurová dle výzkumů neovlivňuje frakci HDL cholesterolu, ale mohla by být jistým prekurzorem pro vznik omega-3 mastných kyselin, pokud jich nemá člověk ve stravě dostatek. Pro potvrzení této informace je ale potřeba dalších studií. Kyselina myristová má největší vliv na cholesterolémii. Zvyšuje jak hladinu LDL cholesterolu, tak i hladinu HDL cholesterolu. Posledním zástupcem této skupiny mastných kyselin je kyselina palmitová. Spolu s kyselinou stearovou se jedná o jednu z nejvíce zastoupených NMK ve výživě člověka. Co se týče cholesterolu, tak kys. palmitová zvyšuje hladinu obou frakcí, a tím i hladinu celkového cholesterolu. Dle některých zdrojů kyselina palmitová reguluje také hladinu některých hormonů, ovlivňuje imunitní funkce a zvyšuje inzulinovou rezistenci. Z tohoto důvodu by se měli diabetici vyhýbat potravinám bohatým na tuto mastnou kyselinu. Kyselina stearová Na rozdíl od ostatních nasycených MK, které jsou popsány výše, disponuje kyselina stearová odlišným chováním v organismu. Tato mastná kyselina s 18 atomy uhlíku má vítaný vliv na hladinu LDL cholesterolu, kterou dokáže mírně snižovat. HDL cholesterol v jejím případě zůstává nedotčený, ale vzhledem k tomu, že snižuje celkovou hladinu cholesterolu, považuje se její vliv za příznivý, protože zlepšuje poměr mezi LDL a HDL frakcí. Dále bylo prokázáno, že kys. stearová zvyšuje inzulinosenzitivitu. Příjem nasycených MK by měl být do 10 % z celkového denního energetického příjmu. Každá mastná kyselina se skládá z prvků uhlíku, vodíku a kyslíku. Z chemického hlediska jsou mastné kyseliny konkrétně karboxylové kyseliny s alifatickým uhlovodíkovým řetězcem. Nasycené mastné kyseliny Nasycené mastné kyseliny neobsahují dvojnou vazbu. Jejich obecnou chemickou stavbu můžeme vyjádřit takto: CH3 – (CH2)n – COOH ![]() |
Vláknina | 6,2 g | 2,42 g |
Průměrné nutriční informace Vláknina Skupina nestravitelných látek v rostlinných potravinách (celozrnném pečivu, ovesných vločkách, luštěninách, zelenině, ovoci). Mechanicky povzbuzuje správnou funkci střev, a podporuje tak zažívání, snižuje schopnost střeva vstřebávat škodlivé látky, tuky a cholesterol. ![]() |
Sůl | 0,33 g | 0,13 g |
Počet dávek v balení | 1 |
Udává počet jednotlivých dávek výrobku v balení. ![]() |
---|---|---|
Celková hmotnost včetně obalu | 50 g |
Udává celkovou hmotnost výrobku včetně jeho obalu. ![]() |
Hromadné balení | 1 ks |
Udává počet kusů (kartonové množství) výrobku v hromadném balení (v kartonu) ![]() |
Měrné ceny k produktu Super Hydro 77 DH12 2270g
vanilka | 61,63 Kč / 100 g |
---|
1 324 | Kč |
(-36%) 2 055 Kč |
1 197 | Kč |
(-24%) 1 570 Kč |
Ke zboží Super Hydro 77 DH12 2270g nebyla otevřena žádná diskuze,otázka ani odpověď. Buďte první.
Napište dotaz k produktu, hodnocení nebo recenzi.
Změna popisu a složení zboží, fotografií a cen vyhrazena. Etiketa výrobku a jeho balení se může lišit od zobrazené verze v závislosti na aktuálním balení od výrobce